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We apply a recently proposed nonlinear noise-reduction method to time sequences from two different
experiments. We demonstrate that it is not difficult to choose the parameters of this algorithm, even
though we use no other information about the underlying dynamics than the data themselves. The noise
reduction is very robust with respect to changes in the choice of parameters. The reliability of the result
is tested by an analysis of the corrections. We discuss the effect of noise reduction on estimates of di-
mensions, entropies, and Liapunov exponents. For comparison we process one of the sets, densely sam-
pled Taylor-Couette flow data, with a global filter based on singular value decomposition.
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I. INTRODUCTION

To a certain extent all experimental data are contam-
inated with noise. This is also true for time series from
nonlinear sources, even if they are obtained under well-
controlled laboratory conditions. Except in the case of
gross oversampling, traditional (e.g, Fourier-based) filters
fail since the signal itself can have a broad-band spec-
trum.

Nevertheless, it is desirable to reduce noise in such sig-
nals, in particular if one wants to extract information on
small-length scales. This is the case for scaling quantities
but also for predictions (see, e.g., [1] for a review on non-
linear time-series analysis in general).

A number of nonlinear noise-reduction methods has
been proposed [2-8] but apparently they are not yet
much in use. This might be partly due to the fact that
they are nontrivial to implement (except maybe the lazy
person’s version [8]). A more serious concern is that only
limited experience with the effect of nonlinear filters on
nonlinear signals exists as compared to applying linear
filters to linear signals.

Thus we want to demonstrate in this paper how careful
nonlinear processing can lead to consistent and reliable
noise reduction. This done, much more information can
be extracted from the data.

As examples we apply the noise reduction scheme
developed in [7] to two data sets: (1) a data set from the
Taylor-Couette flow experiment [9] provided by Buzug
and Pfister and (2) data from the NMR-laser experiment
[10] taken by Flepp, Simonet, and Brun.

II. NOISE REDUCTION WITH LOCAL PROJECTIONS

In this section we briefly recall the main steps to the
noise-reduction scheme proposed in [7], which can be
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seen as a synthesis of two other recent methods [4-6].

Noise reduction always begins with some idea of which
features of the data we want to call signal and which
noise. It is not a priori obvious what the noise part of a
given data set is, and it is even less clear how the noise-
reduced signal should look. Our approach to nonlinear
noise reduction is to assume that the true signal is gen-
erated by a deterministic dynamics, whereas the noise is
random.

So let us assume that our data are generated by a low-
dimensional deterministic system with possibly chaotic
dynamics, superposed by some additive noise. That is,
one measures the noise signal y,

y.=x,+to,, x,=F(x,,), (1

but there exists a ““clean” trajectory x, obeying the un-
known deterministic dynamics F up to some noise o,.
We expect the noise to be independent of the signal, have
zero average, & (or fast-decaying) correlation, and some
fixed probability distribution. F may be a map or the
time-evolution operator of a first-order ordinary
differential equation.

In many realistic situations this will not be the only
perturbation of the data, which in addition may contain
dynamical noise. This means that the system itself and
not only the measurement is disturbed at every moment.
Therefore a priori no nearby clean trajectory has to exist,
which leads to the shadowing problem [11]. In such a
case it might not even be excluded that what one would
like to call noise is an essential although not deterministic
part of the dynamics, as dynamical noise may, e.g.,
change the stability properties of competing attractors.

All algorithms we are aware of which use dynamics ex-
tracted from the noisy data can reduce noise by about
one order of magnitude, the differences between them not
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being dramatic. It seems that the quality of the fit of the
dynamics is one limiting factor; lack of hyperbolicity of
the dynamics may be another.

So let us now describe how to implement one efficient
noise-reduction procedure. More details and its theoreti-
cal background are given in [7], where also its relation to
other methods [4-6] is discussed.

In order to reconstruct a unique deterministic dynam-
ics from a scalar signal one has to embed the data in some
vector space of sufficiently high dimension, e.g., using de-
lay coordinates [12]. In the latter the problem takes the
form

v, =x,%to,, x,=f(x,_4,...
where the embedding dimension is m. The second equa-
tion defines the clean dynamics in delay coordinates.
Rewriting it in an implicit form,

X —m) s (2)

Fxpx, X, y)=0, (3)
shows that in an (m +1)-dimensional delay coordinate
space the noise-free dynamics is constrained to an m-
dimensional hypersurface. For the measured values y,
this is not true, but the extension of the cloud of data
points perpendicular to this hypersurface is of the size of
the noise level. Therefore one can hope to identify this
direction and to correct the y, by simply projecting them
onto the subspace spanned by the clean data. Before this,
one has to reconstruct this surface from the noisy data.
These are the two main ideas underlying the noise-
reduction algorithm below.

In an embedding space of dimension m +1 we com-
pute the covariance matrix of all state vectors in a small
neighborhood of a given point that we want to correct.
The eigenvectors of this matrix are the semiaxes of the
best approximating ellipsoid of this cloud of points. Now
the important assumption is that the clean signal lives on
a smooth manifold with dimension d <m +1 and the
variance of the noise is smaller than that of the signal.
Then for the noisy data the covariance matrix has large
eigenvalues corresponding to the dominant directions of
the attractor and small eigenvalues in all other directions.
Therefore we project the vector under consideration onto
the subspace of large eigenvectors to get rid of the noise
components. Our fit of the assumed deterministic dy-
namics thus is a local and linear one, being implicitly
contained in the construction of the linear subspace. In
[7] this is formulated as a minimization problem. Here
we only give the solution.

If we want to compute the correction for the nth
embedding vector y,=(y,,V,+41>--->Vn+m)> We first
form a small neighborhood % around this point. From
these points y, € U, we construct the mean

(n) —

1
. i=0,1,...,m @
ni lcu 'k(yE Vi +

and the (m +1) X (m +1) covariance matrix

1
Cz(jn)— ' | 2 Vie+iVi +_/_771n)7]'(1n) . &)
kiy, €U,)
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We then introduce a diagonal weight matrix R and define
a transformed version of the covariance matrix

r\"=R,C{"R; . (6)

For R =I we would obtain orthogonal projections as in
[5,6]. We prefer to penalize corrections based on the first
and last coordinates in the delay window by setting
Ry=R,,,,=r, where r is large. The Q orthonormal
elgenvectors of the matrix ' with the smallest eigenval-
ues are called eg »q=1,...,0. The projector onto the
subspace spanned by these vectors is then

=3 efrelr. g
g=1
Finally, the ith component of the correction 6, is given
by
1 m
n,i=R*§ _yn+j)' (8)

This correction is done for each embedding vector, such
that we end up with a set of corrected vectors in embed-
ding space. Since each element of the scalar time series
occurs in m +1 different embedding vectors, we finally
have as many different suggested corrections, of which
we simply take the average. Therefore in embedding
space the corrected vectors do not precisely lie on the lo-
cal subspaces but are only moved towards them. Fur-
thermore, all points in the neighborhood change a bit
such that the covariance matrix has new eigenvectors.
Thus one has to repeat the correction procedure several
times to find convergence.

A. Implementation

Before we describe more precisely how to implement
this algorithm we want to point out that the embedding
dimension, the dimension of the subspace, and the sizes
of the neighborhoods are important parameters that have
to be chosen appropriate to the data. But, as we shall
show in the applications, this is in general not difficult,
since due to the robustness of the algorithm good results
are obtained for a whole range of values.

To apply the algorithm we proceed as follows.

(i) Embed the time series in an (m + 1)-dimensional
phase space using delay coordinates.

(ii) For each embedding vector y, find a neighborhood
containing at least K points. For efficiency it is advisable
to use a fast neighbor-search algorithm, e.g., the one de-
scribed in [13].

(iii) Compute the center of mass 7,, the covariance
matrix C'™ and the transformed matrix I''". The diago-
nal weight matrix R in Eq. (6) is set to be

10°, i=0ori=m

Ry=1y )

otherwise .

(iv) Determine the eigenvectors of I''" and compute
the correction according to Eq. (8). Note that the ith ele-
ment y; of the time series appears as a component of the
delay vectors y;_,,,...,y;. Therefore its correction is
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the average of the corresponding components of the
corrections 6, _,,,,...,0;.

(v) It is obvious that the linear approximation made by
projecting onto a subspace induces some error, which can
lead to a deformation of the attractor after several itera-
tions. This error causes the local averages of all correc-
tions to be nonzero. Thus we can partly remove this er-
ror by subtracting from each correction the local average.
This improvement is due to Sauer [5].

(vi) When all corrections are computed, the time series
is replaced by the corrected one and the procedure is re-
peated. Our experience with data from known dynamical
systems shows that about eight iterations are a good
compromise between accuracy and time consumption.

For a choice of the three variable parameters of the al-
gorithm we follow the considerations in [7] as follows.

(1) Embedding dimension. For maps the dimensionali-
ty m should not be much smaller than twice the dimen-
sion d.,, for which the noise-free dynamics in delay
coordinates becomes deterministic (and which is
=2D;+1, where D is the fractal dimension of the at-
tractor [12]). For flows, especially if the sampling rate is
high, m can be much larger because of the redundancy in
consecutive data points.

(2) Number of constraints. The remaining subspace has
to have a dimension as small as possible but big enough
not to destroy the attractor, i.e., it should be about the
supposed fractal dimension of the attractor.

(3) Size of neighborhoods. In [7] we derive a heuristic
formula for the desirable size of the neighborhoods:

Kz[<U>T2/D}2D/(4+D) . (10)

Here T is the length of the time series, D the fractal di-
mension of the attractor, and (o ) the relative noise level.
Independently of this, the diameter of a neighborhood
must not be smaller than the noise level; otherwise the fit
of the dynamics may be wrong. In parts of the phase
space where the density of points is high this will lead to
more than K neighbors. Both criteria give decreasing
neighborhoods during the iterations since the noise level
will decrease.

Our experience with time series with known clean tra-
jectories shows that a suboptimal choice of these parame-
ters is not fatal. Generally, the corrections are either
simply too small or the curvature effects dominate the
remaining error.

B. Practical data processing

Dealing with experimental data sets, we adopt the fol-
lowing general strategy. Before doing any processing we
become acquainted with the data. First we look at
iterates and phase portraits with different delays. This
could already detect gross nonstationarity. To obtain an
idea of the sampling rate and thus of the redundancy in
the signal we compute the time-delayed mutual informa-
tion [14] and locate its first minimum (if there is any).
Following the discussion in, e.g., [1] we do not regard this
or any other delay as optimal for embedding purposes but
we use it as a guideline. If we wanted to extract as much
information as possible without an explicit noise-

reduction step it could be worthwhile to optimize the
embedding parameters [15]. But as we use the noisy data
only for qualitative studies we can afford a little sloppi-
ness at this stage. After noise reduction we expect a
much reduced sensitivity to embedding parameters.

Now we compute the correlation sum C, using the
unprocessed data. The correlation sum [16] is defined as

cim(e)=—=S 0t~y , (1
T2 <~ j
L]

where y, are the embedding vectors of dimension m. [As
usual, we exclude all terms with |i —j| <t, from the sum
(11) to suppress spurious dynamical correlations, where
the correlation time ¢, has to be estimated from the data.
For maps ¢, equals unity; for flow data it depends on the
sampling rate. See [1] for more details of the implemen-
tation]. For sufficiently high embedding m one expects to
find a scaling range

Cim(e) e, (12)

where D, is the correlation dimension of the attractor.
From this we already hope to get a rough estimate of a
possible finite attractor dimension. We also expect the
noise to affect scaling below a certain length scale which
we then take as a first estimate of the noise level.

These estimates should suffice to choose the parameters
for the first attempt on noise reduction. With the pro-
cessed data we can check these estimates, taking the aver-
age size of the correction as a new estimator for the noise
level. If there is a significant discrepancy we might start
again with the new estimates.

The correlation sum Eq. (10) provides more informa-
tion than only about the dimensionality. The correlation
entropy h, (see, e.g., [1]) also can be extracted from
C{™ (€) through the formula

h,= lim

€—0, m—»

Linfeime . (13)
m

Intuitively, this quantity is related to the rate of produc-
tion (or consumption) of information due to the chaotici-
ty of the dynamics.

The last quantity we use as an indicator of noise on the
data is the set of the Liapunov exponents A;. They de-
scribe the rate of exponential divergence or contraction
of nearby trajectories with time. It is difficult to obtain
accurate results for these quantities from a time series
[17], but for our purposes it is sufficient to determine the
local linear forecast maps in an embedding space of
reasonable dimension and to compute the eigenvalues of
the time-ordered product of their Jacobians [18].

The fractal dimension and the Liapunov exponents are
related through the Kaplan-Yorke formula: After
enumerating the Liapunov exponents in decreasing order
the Liapunov dimension is

2
i=1
D,=n+ , (14)
£ }"n+1

where n is the largest number such that 37_A; >0. Itis
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an estimate for the fractal dimension, which is an upper
bound for the correlation dimension D,. Furthermore,
the sum of all positive Liapunov exponents is equal to the
entropy h;, which is an upper bound of the correlation
entropy h,. Therefore we are able to check the consisten-
cy of these quantities.

III. TAYLOR-COUETTE FLOW EXPERIMENT

Rotational Taylor-Couette flow is a hydrodynamical
system that shows many scenarios of low-dimensional
chaos. For proper boundary conditions, period doubling
[19], intermittency [20], homoclinic orbits [21], and
breakup of two-tori [22] as well as stable three-tori [9]
can be found.

A. Experimental setup

The motion of a viscous fluid between two coaxial
cylinders is called Taylor-Couette flow. The rotating
inner cylinder of the Taylor-Couette apparatus (Fig. 1) is
made of stainless steel and has a radius of r;,=12.5 mm.
The bottom and top plates as well as the outer cylinder
are at rest. The outer cylinder is made of optical polished
glass and has a radius of r,=25 mm. Thus the ratio of
the radii is y=r,/r;=0.5 and d =r,=r;=12.5. The ac-
curacy of the radii is better than 0.01 over the entire
length of 220 mm. The cylinder length 4 can be varied
continuously by moving the metal collar which provides
the top surface of the flow domain, so the aspect ratio
'=h/d, used as a geometrical control parameter, takes
values between 0 and 17.6.

To provide boundary conditions without cylindrical
symmetry, the top plate of the apparatus can be inclined
by a small amount. This inclination is a second control
parameter of the system.

Silicon oil is used as a working fluid. The external con-
trol parameter is the Reynolds number, defined as
Re=(Qdr;)/v, where Q is the angular frequency of the
inner cylinder and v is the kinematic viscosity. The tem-
perature of the fluid is held constant to within 0.01 K by
circulating thermostatically controlled oil through a sur-
rounding square box. A phase-locked-loop (PLL) circuit
controls the speed of the inner cylinder to be better than
one part in 10™* in the short term and better than one
part in 107 % in the long-term average.

FIG. 1. Experimental setup of the Taylor-Couette flow ex-
periment. The data were taken with $=0.23° and h =4.675
mm.

B. Measurement technique

The local-velocity component of the flow field is mea-
sured by a real-fringe laser Doppler anemometer and
recorded by a PLL analog tracker. The analog output
voltage of the tracker is proportional to the velocity.
Two Bragg cells are used to determine the velocity direc-
tion by applying a bias to the signal. The frequencies of
both cells are 40 and 40.1 MHz, shifting the zero velocity
to 100 kHz. The working fluid has to be seeded with
light-scattering particles to obtain proper signal quality.
The particles used are latex spheres of diameter 6.8 um.
According to the arrival statistics of scattering particles
the signal shows Doppler-phase noise. For further signal
processing the velocity signal is fed into an analog-to-
digital converter (ADC) with a 12-bit resolution and then
to a digital computer.

The data to be analyzed here were obtained with a
Taylor cylinder of very small length. The aspect ratio I'
was chosen to be 0.374. In this range one finds period-
doubling scenarios in the restabilized symmetric two-
vortex state when the top plate is inclined. The corre-
sponding bifurcation diagrams into chaos for an inclina-
tion of 0.23° can be seen in [19,22]. From this scenario a
time series is measured in the chaotic regime at a Rey-
nolds number Re=705. The sampling time is T, =20 ms
and the total number of data points is 32 768.

C. Analysis of the Taylor-Couette data

A phase portrait of the original data is shown below
[Fig. 2(a)] where it can be compared with the cleaned ver-
sion. The time-delayed mutual information has a first
minimum at a delay of 12 time steps. We compute the
correlation sum (11) and plot the local slopes of a log-log
plot of C, vs € (Fig. 3). From this plot we can already ex-
pect an attractor dimension of about 3. Noise destroys
the scaling behavior below % the size of the attractor.
Thus we make the following choice of parameters for the
noise reduction.

(1) With a guess for the attractor dimension of 3 and
the rather fine sampling we should choose an embedding
dimension of at least 7 (m =6 in the notation of [7]), rath-
er larger. We try 9.

(2) To leave room for three local degrees of freedom
we impose six constraints (which does not limit the at-
tractor dimension to 3, as discussed in [23]).

(3) Since the effect of noise seems to destroy proper
scaling below - the attractor size, we require neighbor-
hoods in the first iteration not to be smaller than this. In
addition, we evaluate Eq. (10) and search for at least 32
neighbors for each neighborhood.

With these parameters we form a corrected version of
the time series. If we suppose that the average size of the
correction made is close to the size of the noise (which is
a reasonable assumption even if it is not just exactly the
noise we remove), we can give a new estimate of the noise
level. It turns out that the data is corrupted with about
5% noise, which is slightly less than what we estimated
above. Thus we rerun the noise reduction with the new
requirement for the size of the neighborhoods.
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A phase portrait of the second corrected version,
which turns out to be hardly distinguishable from the
first one, is shown in Fig. 2(b). The second run confirms a
noise level of 5%. The drastically improved scaling re-
gion in the correlation sum (Fig. 4) suggests that the
noise level has been reduced by about a factor of 4.

We started with the assumption that the measured data
are additively composed of a low-dimensional determinis-
tic part and random noise. If what we removed is really
additive noise it should be uncorrelated with the signal
(multiplicative noise or errors by nonlinear measurement
devices would be correlated). If the noise is approximate-
ly white the corrections should have fast-decaying auto-
correlations. In Fig. 5 we can see that indeed the cross
correlation between signal and correction is very weak.
The same holds for the autocorrelation of the correction
(Fig. 6). Both figures show an interesting feature: The
first set of parameters was chosen with too high an esti-

4000

2
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4000 1=
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B

—

o) L 1 1 1 1 1 1
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FIG. 2. Phase portrait of the Taylor-Couette data. In both
panels the delay time is 5 steps. Panel (a) shows the unpro-
cessed data, panel (b) the same data after noise reduction.
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FIG. 3. Local slopes of the correlation sum for the unpro-
cessed Taylor-Couette data. The time delay was S steps and
embedding dimensions 2—-20 are shown. For the coarse struc-
ture (above e=2"3) only 2000 points were used.

mate of the noise level. Therefore we took rather large
neighborhoods, which induces errors due to the linear ap-
proximation. These errors are proportional to the local
curvature of the attractor and thus induce correlations
between signal and corrections. These are visibly smaller
for our second set of parameters, where smaller neighbor-
hoods were used. We check that the corrections are dis-
tributed according to a normal distribution with width
5% of the attractor size. However, we think this is not a
very significant observation. Added up through eight
iterations even random corrections would be distributed
almost as a Gaussian. This test is more useful if we know
that the measurement errors are not normal. This is, e.g.,
the case when the data are coarsely digitized. Then we
could check if the distribution of the corrections is con-
sistent with what we know about the errors.

Encouraged by the clear scaling of C,, which is con-
sistent with a correlation dimension D, of 3, we also
compute the corresponding generalized correlation sums
C, for g =1 (see again [1] for details, e.g., concerning
finite sample corrections). In Fig. 7 we shifted the curves

8 T T T T T T T
all points —<—
7 2000 points —+— -
6 4
~ 5 1
104
a2 4 4
B3
MRS = 7
% S &85 &
] 2& -
1F -
0 1 1 I 1 1 1 |
-7 -6 -5 -4 -3 -2 -1 0
logy €

FIG. 4. Same as in Fig. 3 but using the set after noise reduc-
tion. Now a clear scaling region is visible.
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FIG. 5. Normalized cross correlation between signal and
correction (Taylor-Couette data). A positive lag time / means
that the product is formed between the signal at time ¢ and the
correction at time ¢+/. The two lines correspond to two at-
tempts at noise reduction with different parameters.

by normalizing with Cq(e=2_4). Thus we see that the
data for 1<g <11 lie on straight lines with slightly
different slopes. From these slopes we can extract num-
bers for D, which decrease with increasing g, as they
should. The different slopes are a sign of the multifractal
structure of the attractor. However, with the material at
hand we do not dare to estimate an f(a) spectrum or
even part of it.

Following Eq. (13) we estimate the correlation entropy
to be h,~0.15. The Liapunov exponents we find for a
three-dimensional embedding are A;=0.12+0.02,
A,=0%£0.01, and A;=—0.45%0.03, but an estimate of
negative exponents is never very safe (see the discussion
in [17]). From this we find a Liapunov dimension of
about 2.25, which is smaller than our estimate of D, and
thus not consistent with this, but which also depends very
strongly on the size of A;. Note that A,=0, as it should
be. On the original noisy trajectory we find one exponent
close to zero and two negative exponents. This wrong re-
sult is a consequence of the fact that the diffusive devia-
tion of trajectories due to noise is much stronger than the
deterministic exponential divergence. If one wants to
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FIG. 6. Normalized autocorrelation of the correction for the
Taylor-Couette data.
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FIG. 7. Generalized correlations sums C, for 1<g =11
(Taylor-Couette data). The curves are shifted vertically by suit-
able normalization. Thus the log,C, axis has different offsets
for the different curves. Delay 5 was used for a 10-dimensional
embedding. Lower left-hand corner (top to bottom): g=1,
g=11,...,2; upper right-hand corner (top to bottom):
g=1,...,11.

compute Liapunov exponents on noisy trajectories, one
has at least to use large time delays. By this the diver-
gence rate is multiplied with the time step, whereas the
noise level is the same as before.

Finally, we want to remark that this data set is a case
where a global filter based on singular value decomposi-
tion [24,25] can be applied to reduce noise by a certain
amount. This is due to its relatively fine sampling rate,
which suggests even the use of a simple low-pass filter.
Both, however, give only a very slight improvement of
scaling properties, which shows that this kind of noise
reduction is not more than a smoothing of the trajectories
without restoring any structures.

IV. PARAMETRICALLY MODULATED
NMR LASER

The second data set stems from a NMR-laser experi-
ment.

A. Design of experiment and measurement

A ruby NMR laser is parametrically modulated with a
sinusoidal driving signal near the relaxation oscillation
frequency of the free-running system. In this way a natu-
ral time is introduced which facilitates greatly the
analysis of the synchronously strobed laser output.

The NMR laser [10], like any laser, has two essential
ingredients: the radiating ‘“particles” {atoms, molecules,
electrons, nuclei, etc.) and the radiation field produced by
the particles. An external pump causes the population
inversion where the higher-energy states of the particles
are more strongly populated than the lower ones. A reso-
nant structure (cavity), which endorses the particles, pro-
vides the feedback for the laser field thus causing the
coherent excitation and radiation of the particles. In the
ruby NMR laser the lasing “particles” are the nuclear
spins of the 2’Al in AL O;:Cr3", and the radiation field is
a magnetic radio-frequency field sustained by the tuned
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NMR coil that forms the cavity of the laser. Spin inver-
sion beyond the first laser threshold is obtained by means
of dynamic nuclear polarization (DNP) at the lattice tem-
perature of 4.2 K. DNP is achieved by shining mi-
crowaves at Cr®™, thus causing electronic-spin transitions
which pump the nuclear spins to the lasing state.

The free-running NMR laser typically oscillates at the
center frequency v,=12.3 MHz of the ({,—1) NMR
line of ?’Al in a static magnetic field B,=1.1 T. The
NMR cavity is thereby tuned to v,. The NMR laser thus
acts as a tuned single-mode, homogeneously broadened,
unidirectional laser. The NMR laser field induces a volt-
age in the receiver coil L which can be tapped at the tun-
ing capacitor C. The NMR laser signal is thus a rf volt-
age V(t) across C. Since the free-running laser is essen-
tially a two-dimensional dynamical system, an additional
degree of freedom is required in order to bring it into
a chaotic state. This is achieved, for example, by a
small modulation of the quality factor Q(¢)
=Qo(1+p cos2mv,, ) of the NMR cavity. As laser chaos
consists primarily of irregular variations of the amplitude
of V, the rf laser signal is demodulated and its envelope
v (t) only is recorded. We call v(z) the laser output. That
output is proportional to the transverse nuclear magneti-
zation M, =(M?+M?)'/* which can be theoretically cal-
culated from the highly accurate extended Bloch model
(EBL) [26].

The NMR laser turned out to be an extremely versatile
device because of some outstanding properties: long-time
stability, high signal-to-noise ratio, good control over sys-
tem parameters, and low-dimensional dynamics. The
crucial experimental parameters are set by a data-
acquisition and control system based on an Olivetti M24
PC and a Mandax386, which are complemented by
mathematical coprocessor, ADC board, IEEE control
units, and various digital input/output ports. The experi-
mental time series are collected by sampling the laser out-
put with a 12-bit resolution analog-to-digital translation
board at a frequency v, =15v,,. The modulation frequen-
cy is kept constant at v,, =91 Hz. We choose a modula-
tion amplitude p slightly below the crisis point p, where a
sudden change in the size of the strange attractor occurs
[27,28]. The rather low modulation frequency allows a
double-buffering acquisition technique to collect the time
series consisting of N =600 000 integers.

B. Analysis of the NMR-laser data

The data set studied in this paper originally consisted
of 600000 12-bit integers, the last 1800 of which were
discarded after inspection since the synchronization with
the modulation seems to have been lost. Although from
the point of view of good statistics this amount of data is
desirable, for many purposes the size of the data set is
rather inconvenient under the aspect of numerics. Thus
we shall mainly concentrate on the analysis of Poincaré
sections.

C. Poincaré sections

The only knowledge we use in addition to the data
themselves is that they are sampled at a rate v, =sv,,,

which is an integer multiple of the modulation frequency
v,,. In this case s =15. Thus defining a Poincaré section
by requiring equal phase of modulation amounts to tak-
ing only every 15th data point.

Thus a Poincaré section consists of 39 880 points and
there are s =15 different possibilities to choose the phase
which defines the surface of section. We choose the stro-
boscopic section which yields the largest variance to
guarantee the highest signal-to-noise ratio.

But there is still a better way to form a Poincaré sec-
tion than just taking one of the stroboscopic sections. As
mentioned, all 15 different phases yield valid sections:

j;t(p)=yst+P’ PZO,---yS—l, T=1""’39880'
(15)

In fact, almost all linear combinations of the 15 points
within a cycle of the modulation
s—1
./V\tz zapyst+p (16)
p=0
formally give valid coordinates, but they are not equally
good: they differ in their variance. We are interested in
the linear combination with the highest variance, holding
the norm 33 -ba’ of the coefficient vector fixed. This is
done by a principal component analysis on the s Xs co-
variance matrix [25] of the whole series of T =598 200
points

T/s—1

Coo =(T/5)' 3 Waap= M) Wsig—1g) > (17
t=0

where 1, =(T/s)" 'S4y, ,, is the average of the
section with phase p. The eigenvector of C with the larg-
est eigenvalue gives the linear combination with the
highest variance. A phase portrait of the Poincaré sec-
tion thus obtained is shown in Figs. 8 and 9. Indeed we

3000

T 0
13
>
-4000
-4000 0 3000
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FIG. 8. Phase portrait of the Poincaré section of the NMR-
laser data. The delay time is 1.
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will see below that the noise level of this particularly
chosen section is 1.1%, significantly lower than the best
stroboscopic section containing 1.8% noise. The analysis
in this section is done with this Poincaré cut. Similar re-
sults are obtained with a stroboscopic section.

Also for this set we estimate the correlation sum C,
(Fig. 10). From this we might expect a dimension below
2 and a noise level of % the attractor size. Thus we
choose parameters for noise reduction as follows.

(1) With an attractor dimension below 2 and the map-
like sampling we choose an embedding dimension of 7
(m =6 in the notation of [7]), i.e., slightly higher than
necessary.

3000 T T T

Yn+1

1400
-4000

Yn

3000 T T T

Yn+1

1400 ¢ 1 1 1
-4000

Yn

FIG. 9. Enlargements of phase portraits of the NMR-laser
data. Panel (a) shows the unprocessed data (same as in Fig. 8),
panel (b) the same region after noise reduction.
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logy €

FIG. 10. Local slopes of the correlation sum for the unpro-
cessed NMR-laser data (Poincaré section). Delay 1 was used in
2-15 dimensions.

(2) The five constraints we impose leave room for two
local degrees of freedom.

(3) In the first iteration we form neighborhoods of at
least ; the attractor size and a minimal number of 64
neighbors, as obtained from Eq. (10).

The corrections we compute during eight iterations
have an amplitude amounting to 1.1% the amplitude of
the signal. This is close to the 3‘3 we guessed, so we do
not have to repeat the procedure with new parameters.
We find that the autocorrelation of the corrections as
well as the cross correlations between the signal and the
corrections are very small ( <0.04), as they should if the
separation into signal plus additive noise makes sense.

Again we see an enormously enlarged scaling region of
C, (Fig. 11). However, the values for D, we could read
off for increasing embedding dimensions do not converge
to a constant value as desired. Instead they increase with
a rate of about 0.03 per new coordinate. This can have
different explanations. Somehow, a higher-dimensional

component is visible in the system on all length scales.

dlog, Cy(e)
dlog, €

-14 -12 -10 -8 -6 -4
logy €

FIG. 11. Same as in Fig. 10, now after noise reduction. Scal-
ing is visible over more than 2 decades.
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This might come from some source of multiplicative or
dynamical noise. It could be due to fast fluctuations in
some parameter, or a mechanical or electronic distur-
bance of the apparatus, but also due to fluctuations in the
synchronization of sampling and modulation. We want
to stress that it cannot be an artifact of our noise-
reduction algorithm, since it is visible also in the original
data on scales greater than 27° (see Fig. 10). Neverthe-
less, the striking feature of the data is its scaling behavior
over more than two decades.

From the correlation sums of different embedding di-
mensions we estimate the entropy 4, =0.310.05 with a
slight increase towards smaller scales, which is related to
the above mentioned increase of the correlation dimen-
sion. Using three-dimensional delay coordinates we find
Liapunov exponents A;=0.294+0.02, A,= —0.59+0.02,
and A;=—1.224+0.02. This is in good agreement with
the entropy and yields a Liapunov dimension of D; =1.5.

Despite the lack of convergence for high embedding di-
mensions we can try to estimate generalized dimensions
D,. We just have to agree on a fixed embedding dimen-
sion and range of length scales. In Fig. 12 we can see
that all curves for 2=<¢ <11 are close to a straight line
with slope 1.45. A least-squares fit to the data shows,
however, that the slopes decrease systematically with g
from D,=1.5 to D;=1.33 with errors of about 0.005.
Only the curve for C, corresponding to the information
dimension deviates at smaller length scales. D; is much
more sensitive to sparse or empty neighborhoods, where
one systematically obtains too flat curves of C;. Thus we
have a weak indication of multifractality in this data set.

D. Flow data

Up to now we have concentrated on a Poincaré section
of the data. Usually one expects that such a section

log, Cy(e) — logy Cyle = 107%)

logg €

FIG. 12. Generalized correlation sums C, for 1=g=11
(NMR-laser data, Poincaré section). Again the curves are shift-
ed vertically by suitable normalization. The embedding dimen-
sion is 10; the delay is 1. Lower left-hand corner (top to bot-
tom): ¢g=1, ¢ =11,...,2; upper right-hand corner (top to bot-
tom): g=1,...,11.

shows an attractor which is exactly one dimension lower
than that of the flow. The additional dimension can be
thought of as being spanned by the coordinate obtained
by parametrizing the orbit by the evolution time. How-
ever, the data at hand are taken in a very special way:
between two intersections exactly an integer number of
samples are taken, the intersections themselves coincid-
ing with measurement times. Thus the additional coordi-
nate takes only s discrete values and is not able to raise
the attractor dimension by 1, but only s discrete and dis-
joint copies of the low-dimensional attractor are formed,
which does not yield the expected higher dimension.

Therefore if one is interested in analyzing the flow data
rather than Poincaré sections one has either to do a non-
synchronized measurement or to artificially remove the
synchronization of the data. This can be done by choos-
ing a new sampling time which is not commensurate with
the modulation time. Data sampled with this rate can be
formed by interpolating between the measured values.
We created a new time series by resampling the flow data
with a sampling time which was a factor e=2.71828. ..
longer than the original one, thus also reducing the
length of the series by the same factor. We do not repeat
all the above points for the flow data set. We indeed find
a correlation dimension D, which is higher by 1.

Generally, the reason for not using a Poincaré section
is that the intersection points are not equally spaced in
time and that the resulting data set is too small. None of
these problems occurs in this case. With the amount of
data at hand, the loss of information in taking a Poincaré
section (which we also minimized by taking the first prin-
cipal component) is by far outweighed by the saving in
CPU time: noise reduction on data sets of about 40000
points takes less than 2 h on a DEC station 5000. In
principle the time and memory needed grows linearly
with the number of points to be processed (with a box-
assisted neighbor-search method [13]). However, the
flow data has to be embedded in a dimension at least
higher by 2 to obtain satisfactory results. We did not at-
tempt to clean the full 600000 points but already the
220000 points of the resampled set took about 30 h to be
cleaned.

V. CONCLUSIONS

The existing literature on noise reduction (major refer-
ences include [2-8]) is to a large extent concerned with
the development of algorithms. During this stage
methods are mainly tested on artificial data sets where
the dynamics is known and properties of the noise are
controlled. Encouraged by the promising results of these
tests we dedicated this paper to the next step, the applica-
tion of nonlinear noise reduction to laboratory data. By
straightforwardly running the algorithm given in [7] us-
ing the practical guidelines given there, we succeeded in
removing most of the measurement error on two high-
quality data sets. We found evidence that these sets can
indeed be consistently separated into a low-dimensional
deterministic part plus measurement noise.
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These examples, together with earlier applications
(e.g., in [2,4,8,23]), show that nonlinear noise reduction is
becoming an indispensable tool for analyzing data from
nonlinear dynamical systems. After more experience has
been gained on data of comparable quality we can hope
to extend the range of applicability to less clear cases,
such as data with dynamical or parametrical noise,
higher-dimensional data, etc.
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